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nisms and reservoir heterogeneity properly on a numerical
mesh. In addition, the numerical dispersion and diffusionAn adaptive local mesh refinement algorithm originally devel-

oped for unsteady gas dynamics by M. J. Berger is extended to properties of conventional low-order methods can domi-
incompressible flow in porous media. Multilevel iteration and do- nate the physical dispersion terms in the models. Third, po-
main decomposition methods are introduced to accommodate the rous media flow often involves important information on
elliptic/parabolic aspects of the flow equations. The algorithm is

many physical scales. Representing physically meaningfulapplied to a two-phase polymer flooding model consisting of a
data on various length and time scales efficiently during asystem of nonlinear hyperbolic mass conservation equations cou-

pled to an elliptic pressure equation. While the various numerical numerical simulation is a formidable task.
methods used have been presented previously, our emphasis is on To provide useful information for the development of
their consistent combination within the adaptive mesh refinement recovery processes, field-scale simulations may need to
framework to treat important problems in porous media flow. To

resolve fine-scale localized flow behavior. Usually thisachieve efficient, easily maintainable code, we have exploited the
means that the computational mesh must be sufficientlyfeatures of object-oriented programming for the overall program

structure and data management. Examples of algorithmic perfor- fine to resolve the length scales of important transient and
mance and computational results are provided. Q 1997 Academic Press static features. Consider that a single petroleum reservoir

may be hundreds of meters thick and tens of kilometers in
diameter and involve hundreds of wells. Also, fluid models

1. INTRODUCTION
used in enhanced oil recovery often encompass as many
as 10 to 20 distinct chemical components. The magnitudeThe numerical treatment of field-scale simulation of en-
of the systems of discrete equations resulting from thehanced oil recovery and aquifer remediation processes is
approximation of such large reservoir and fluid modelscomputationally expensive and may provide unsatisfactory
severely restricts the possibility of using a computationalresults. There are several reasons that conventional simula-
mesh that allows sufficient resolution of all important flowtions do not adequately resolve important flow features.
features. To make simulation computationally viable, lowFirst of all, much is unknown about the influence of fine-
resolution numerical methods are often combined withscaleflowmechanismson themacroscopicbehaviorapprox-
coarse numerical meshes. When these coarse numericalimated during field-scale simulations. Current information
approximations do not resolve relevant flow features, theconcerning the physical and chemical processes suggests
link between computational results and the actual flow incomplicated nonlinear relationships among a large number
a hydrocarbon reservoir or aquifer is not clear. This re-of dynamic flow variables. Often phase behavior models and
duces the usefulness of numerical simulation as a tool inreservoir geometry descriptions, to cite two examples, are
the design of production processes.simplified to allow simulations to be performed with reason-

In this paper, we demonstrate a combination of adaptiveable computational expense. Second, when a multiphase
mesh refinement (AMR) and high resolution numericalfluid mixture is driven through a porous media, complicated
discretization techniques. The use of AMR allows us tofluid interface structures result. Standard computational
provide fine-scale resolution locally and to concentratemethods have difficulty representing unstable fluid inter-
numerical effort near important flow features. Appropri-faces caused by subtle chemical and physical flow mecha-
ately designed and implemented AMR algorithms have
been shown to substantially reduce the computational ex-

The U.S. Government’s right to retain a nonexclusive royalty-free pense needed to obtain a desired level of resolution in a
license in and to the copyright covering this paper, for governmental

variety of numerical simulation problems [5, 13, 14, 27, 43,purposes, is acknowledged.
55, 77]. Due to the localized nature of fluid interfaces and1 Currently at Center for Applied Scientific Computing, Lawrence
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provide similar benefits to field-scale simulation for petro- procedure we employ for its numerical solution. Next, we
discuss the details of the numerical methods as they wouldleum recovery or aquifer remediation. In particular, indus-

trial simulations using AMR would have some important be applied on a uniform mesh. The bulk of the paper
is concerned with the application of AMR to systems ofadvantages over uniformly fine mesh calculations. High

resolution can be achieved locally with less computational equations with mixed hyperbolic/elliptic character. We be-
gin with an illustration of how the sequential solution pro-expense allowing more simulations to be performed within

a given computational budget. Also, computations em- cedure is carried out in the context of AMR. Then we
address specific events in the AMR algorithm individually.ploying AMR require less computer memory. Larger or

more detailed simulations may be run than are possible These include temporal and spatial refinement of the com-
putational mesh, interaction of data across mesh interfaces,with comparable uniformly fine meshes. Ideally, we would

like to employ coarse-scale effective property models that the mesh adaptivity process, and mass conservation and
consistency of the solution on the composite mesh. A de-provide sufficient resolution of important flow features and

which make fine-scale simulation unnecessary. However, scription of the multilevel iteration process used to solve
the pressure equation follows. We conclude with someuntil such models are discovered, AMR is a tool by which

local resolution can be achieved without overwhelming numerical results, a discussion of computational timings
for parts of the AMR algorithm, and a summary.computational expense.

Specifically, we apply AMR to an incompressible, three-
1.1. Polymer Flooding Modelcomponent, two-phase polymer flooding model. The poly-

mer model presents several important mathematical and The two-phase, immiscible polymer flooding model pro-
computational difficulties that complicate the application of vides a simplified description of the flow of an oil and
AMR to more sophisticated models. In particular, the pres- water mixture in which the viscosity of the water increases
sure equation and mass conservation equations are nonlin- with the polymer concentration. We assume that there
early coupled in a fairly complicated manner. We use a se- exist three fluid components (oil, water, and polymer) that
quential solution approach that separates the mixed flow in two phases, oleic (o) and aqueous (a). We assume
hyperbolic/elliptic behavior in the flow equations [12]. no mass transfer between phases. The oil exists only in the
While the individual methods used in the computational ap- oleic phase, whereas the water and polymer mixture forms
proachpresentedhereneedto beenhancedtotreatpractical the aqueous phase. For simplicity of discussion and to allow
problems, the combination of specialized numerical meth- us to emphasize the numerical concerns in the application
ods with adaptive mesh refinement is particularly challeng- of adaptive mesh refinement, we assume that the flow is
ing and is the primary focus of this paper. The algorithmic incompressible, and that adsorption, hysteresis, capillary
approach is sufficiently general that it extends to compress- pressure, and physical dispersion are all negligible. The
ible flow problems involving complicated phase behavior basic equations of two-phase immiscible displacement are
models [78, 79]. This extension is the subject of ongoing well known and treated in several sources [8, 9, 56, 59, 64].
work. The polymer flooding model is commonly presented as

Key to achieving a successful adaptive approach is deal- an extension of the classical two-phase Buckley–Leverett
ing with the communication between computational cells model [4, 65] and has been analyzed extensively from both
on a composite mesh in an efficient, mathematically, and mathematical and computational points of view [36, 40,
physically meaningful manner. The subtle nature of this 44, 47–50, 81].
communication is reflected in the complexity of data struc- We require that the mass of each of the fluid components
tures and algorithms employed. To develop efficient, easily is conserved subject to the constraint that the sum of the
maintainable code, we have exploited the object-oriented phase saturations is one:
features of C11 for the AMR program structure and
data management, while numerically intensive routines are sa 1 so 5 1. (1)
written in FORTRAN. In a typical two-dimensional prob-
lem, the overhead cost associated with AMR for interpatch Each phase saturation represents the ratio of phase volume
communication and mesh adaptivity is approximately 20% to rock pore volume. The pore volume constraint com-
of the cost of the entire computation. This is roughly twice bined with the assumption of no inter-phase mass transfer
the overhead cost reported in AMR computations for gas implies that a separate mass conservation equation for the
dynamics [13] and solid mechanics [77]. The additional oil component is redundant. Thus, the conservation of the
expense is due to the communication costs associated with masses of the three fluid components is completely de-
the iterative methods used to solve the elliptic parts of the scribed by Eq. (1) and the system of two conservation laws
flow equations.

In the remaining discussion, we first introduce the poly- mÁ

t
1 =Á

x FÁ 5 0, (2)
mer flooding model in a form suitable for the sequential
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where depth in the producer is determined from the specified
value and the assumption of gravity equilibrium.

To determine the total fluid velocity along the injection
m ; F sa

csa
G f,

(3)
boundary, we assume that the velocity normal to the well-
bore (i.e., along the boundary) is proportional to the trans-
missibility at the boundary. The proportionality constant

F ; F1

c
G Fla

lÁ

(vÁ 1 lo(ra 2 ro)gK =xd)GÁ

. is chosen so that the integral of the flow rate along the
well is equal to the total prescribed flow rate. Since q is
the specified rate of injection, vÁ at height x2 from the

The polymer concentration is c, f is porosity, permeability bottom of the well is
is K, and =xd is the depth gradient. The permeability tensor
and depth may be functions of the spatial position vector

vÁ(x2) 5
q

Eh

0
eÁ

1 (lÁK)e1 dz
S d

dx2
Ex2

0
eÁ

1 (lÁK)e1 dzDU
x2

, (6)x. Incompressibility allows us to assume that the phase
densities ro, ra are constant. The phase mobilities lo, la

and the total fluid mobility lÁ 5 la 1 lo are functions of
sa and c. where h is the length of the injection well. Once the injec-

Several empirical relationships are necessary to close tion velocity is known, we can determine the injection
the system of equations. Darcy’s law relates the total volu- pressure by using Eq. (4) along the boundary. Generally,
metric flow rate vÁ to the pressure gradient and gravity this requires the solution of a linear system along the entire
terms: boundary as the well pressure values are coupled.

At the production well, we must determine the pressure
vÁ 5 2KlÁ[=xp 2 l21

Á (loro 1 lara)g =xd]. (4) along the boundary given the aforementioned ‘‘bottom-
hole’’ pressure. The gravity equilibrium assumption states
that the sum of all fluid flow driving forces in the verticalIncompressibility and the volume balance constraint give
direction (i.e., perpendicular to the direction of bulk flow)us a pressure equation:
is zero. That is,

=Á
x vÁ 5 0. (5)

eÁ
2 [=xp 2 l21

Á (loro 1 lara)g =xd] 5 0 (7)

The phase mobilities are defined as functions of sa and c:
along the boundary. Note that the well boundary condi-
tions are time-dependent in that the mobility and density
terms along the boundary depend on the fluid in the wellslo(sa) 5

kro(sa)
eo

, la(sa, c) 5
kra(sa)
ea(c)

.
and the fluid within the reservoir. For further details on
wells and boundary conditions used in reservoir simulation;

The phase relative permeability model is kro(sa) 5 (1 2 sa)2, see Lake [56] and Peaceman [64].
and kra(sa) 5 s2

a. The phase viscosities are given as eo 5
e0, and ea(c) 5 e0(e1 1 c), where e0 5 0.35, e1 5 0.50. 2. NUMERICAL TREATMENT OF FLOW IN
These mobilities and viscosities are not representative of POROUS MEDIA
any particular reservoir system. They are chosen because
their functional form is used commonly in two-phase mod- Multiphase flow in oil recovery and aquifer remediation

processes exhibits behavior typical of the solutions to bothels. Also, they reveal certain mathematical and numerical
difficulties in the flow equations. In particular, the given elliptic/parabolic and hyperbolic partial differential equa-

tions. For example, pressure changes are felt quicklymobility functions imply that the hyperbolic system is not
strictly hyperbolic and possesses local linear degeneracies throughout the reservoir when the flow is incompressible

or only slightly compressible. In contrast, fluid fronts tend[4, 42, 45].
In Section 5, we present numerical results from the simu- to move with much slower speeds and can be fairly sharp.

Generally, the equations of multiphase porous media flowlation of a two-dimensional vertical cross-section between
an injection well and a production well. The top and bottom can be written as a system of conservation equations for

the masses of the fluid components, subject to a constraintof the reservoir are sealed. That is, (vÁ)Án̂ 5 0 at any point
along the top or bottom, where n̂ is the outward unit normal that the fluid fills the void space in the rock. If the model

describes incompressible flow, one obtains a pressure equa-to the reservoir. For the injection well, we specify the flow
rate and the injected fluid composition. At the production tion (recall Eq. (5)) by summing the mass conservation

equations and applying the volume balance constraintwell, we specify a single pressure value which represents
pressure at the bottom of the well. The pressure at each [4, 41]. In the compressible case, it is often reasonable to
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linearize the volume balance constraint in time to develop as those in the work of Berger and Colella [13] and
Trangenstein [77]. The algorithm is extended through thea nonlinear parabolic pressure equation [12, 78, 79]. In

either case, the pressure equation relates the pressure of incorporation of multilevel iteration techniques to solve
the elliptic pressure equation on the composite mesh thatthe fluid to its composition through phase behavior rela-

tionships and rock heterogeneity. Separating the flow allows both temporal and spatial refinement locally within
the problem domain.equations allows us to develop a numerical approach

suited to the specific character of each equation. For dis-
2.1. The Polymer Model Mass Conservation Equationscussion of the effectiveness of the sequential approach for

convection-dominated flow associated with enhanced oil It is important to approximate the time integration of
recovery problems; see the work of Bell, Shubin, and the conservation equations (2) with a numerical method
Trangenstein [12, 78, 79]. that is strictly conservative. Methods that are not conserva-

As we saw in Section 1.1, the pressure equation (5) and tive can produce nonphysical traveling waves [57] and pro-
the mass conservation equation (2) in the polymer model hibit the use of conservation-oriented scaling rules on an
are nonlinearly coupled in several ways. The presence of adaptive mesh. We employ the second-order unsplit Godu-
the mobilities in the pressure equation implies that p and nov method to integrate the hyperbolic system of mass
vÁ depend on sa and c. The conserved quantities depend conservation equations. By the term unsplit, we mean that
on vÁ (and p), since vÁ appears in the flux matrix. The the numerical approximation of the time evolution of the
sequential formulation specifies that the conservation law multidimensional conservation laws is not represented as
and the pressure equation are alternately advanced as part a product of one-dimensional operators [22]. The method
of an overall discrete time integration procedure. This has been shown to provide superior resolution of compli-
means that saturation and concentration are fixed when cated wave behavior associated with flow in porous media
we solve the pressure equation. Thus, we can interpret the when compared to standard methods [10, 41, 55, 76, 78,
pressure equation as a linear elliptic partial differential 79]. A primary advantage of the Godunov approach is that
equation. For the incompressible polymer model, the se- it produces less numerical dispersion and dissipation than
quential method is essentially the IMPES (implicit conventional methods, especially when applied to multi-
pressure/explicit saturation) formulation commonly found dimensional problems [41, 73]. The grid orientation prob-
in the numerical simulation of flow in porous media [8, 64]. lems resulting from operator splitting and donor cell meth-
The pressure equation is solved in an iterative fashion by ods are reduced by combining higher order accuracy and
applying an appropriate linear solver. The solution to the appropriate transport in directions not aligned with coordi-
pressure equation is then used to compute the fluid velocity nate directions induced by the computational mesh [22].
necessary to evaluate the flux in the conservation equa- Recall the system of conservation laws for the polymer
tions. Once the phase velocities are known, we can apply flooding model, Eq. (2),
any of several numerical methods that integrate hyperbolic
systems in a mass conservative fashion. Using a higher- mÁ

t
1 =Á

x FÁ 5 0,order method with AMR is advantageous so that fluid
interfaces can be resolved over a relatively small number
of cells, thereby allowing mesh refinement to be concen- where the vector of conserved quantities and the flux ma-
trated in localized regions of the flow domain. trix are given by Eq. (3). The Godunov method is based

As was demonstrated in Section 1.1, the separation of on the following conservative difference on a rectangu-
the governing equations into a hyperbolic part and an lar mesh:
elliptic part is fairly simple for the polymer flooding model.
The individual numerical methods that we use have been mn11

ij 5 mn
ij

described in previous studies. The Godunov method and
the mixed finite element method are discussed in [4, 12,

2 Dtn F(Fe1)n11/2
i11/2,j 2 (Fe1)n11/2

i21/2, j

(Dx1)i
(8)22, 84]. The success of the sequential solution approach

for important problems in flow in porous media has also
been demonstrated [8, 12, 41, 79, 78]. Thus, we focus on

1
(Fe2)n11/2

i, j11/2 2 (Fe2)n11/2
i,j21/2

(Dx2)j
G .

the incorporation of these methods into an AMR algo-
rithm. The strong nonlinear dependencies among the un-
knowns in the equations and the nonlocal coupling be- Here, (i, j) are the indices of the cell centers and n is

the index of the timestep. The unit axis vector in the nthtween the pressure and total fluid velocity are the more
substantial hurdles to overcome in applying AMR to flow coordinate direction is represented by en. The following

Courant–Friedrichs–Lewy (CFL) condition is required forin porous media. The portions of the AMR algorithm deal-
ing with the hyperbolic equations are essentially the same numerical stability of the unsplit Godunov method [22]:
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max Hmax
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k
hu(l(k)
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1
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P w(x1, x2, t) 6
Dx1

2
w
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U
(x1,x2,t)

2
Dt
2 FSm
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x
D21

Here, we consider the maximum over all cells (i, j), and
all eigenvalues l(k) of the flux matrix F associated with
each coordinate direction. HFe1

w U
x

w
x1

1
Fe1

x1
U

w
1

Fe2

x2
JGU

(x1,x2,t)The computation of the numerical flux terms (Fe1), (Fe2)
involves several steps. Formal second-order accuracy is
facilitated in regions where the flow is smooth by con- P w(x1, x2, t) 6 SX1 FI 7 L1

Dt
Dx1

GX21
1

w
x1

Dx1

2 DU
(x1,x2,t)structing conservative piecewise-linear interpolants to each

of the conserved variables within each cell [82]. The fluxes
are evaluated by approximating the solutions to Riemann 2

Dt
2 FSm

w U
w
D21 HFe1

x1
U

w
1

Fe2

x2
JGU

(x1,x2,t)
.

problems posed at cell boundaries. Initial data for the
Riemann problems are constructed using the linear ap-
proximations, characteristic tracing, and transverse flux Then, the initial data for the Riemann problem that deter-
correlations to approximate the interaction of data in mines the flux at edge (i 1 1/2, j) is
nearby cells. The transverse flux correction has a stabilizing
effect on the numerical time integration that allows an

wL
i11/2,j 5 wP,L

i11/2,j 2
Dt
2 Sm

w U
x
D21

ij
HFe1

x1
U

w
1

Fe2

x2
J

ij
,improved CFL condition over other higher order ap-

proaches, such as TVD [75] or ENO [72] schemes, as well
as the conventional first-order upstream weighting method

wR
i11/2,j 5 wP,R

i11/2,j 2
Dt
2 Sm

w U
x
D21

i11,j
HFe1

x1
U

w
1

Fe2

x2
J

i11,j
,[70]. We will not discuss the Godunov method in detail in

this paper. The interested reader is encouraged to consult
[10, 11, 37, 41, 63, 82] for further information. We outline where the terms involving the characteristic tracing are
the major features of the scheme below to show how it is
applied to the polymer model.

For the application of the Godunov method, we use the wP,L
i11/2,j 5 wij 1 SX1 FI 2 L1

Dt
Dx1

GX21
1 D

i,j
Sw

x
Dx1

2 D
ij

,
vector of ‘‘flux variables’’ w ; [sa, c]Á, rather than the
conserved variables m. Clearly, the conserved quantities
are easily computed from the flux variables. We rewrite wP,R

i11/2,j 5 wi11,j 2 SX1 FI 1 L1
Dt

Dx1
GX21

1 D
i11,j
Sw

x
Dx1

2 D
i11,j

.
the conservation law in terms of the flux variables as

Analogous quantities corresponding to edges in the x2-
coordinate direction are computed similarly. The spatialSm

w U
x
D w

t
1 O2

n51
HFen

w U
x

w
xn

1
Fen

xn
U

w
J5 0. derivatives of the flux variables corresponding to cell cen-

ters are approximated using the MUSCL slope-limiting
approach of van Leer [82]. The terms involving the flux
derivatives arise from the corner-transport upwind scheme

The system is hyperbolic [4, 46], and we have [22]. Spatial derivatives of the flux terms are approximated
by applying finite differences to preliminary fluxes. The
initial data for the Riemann problems used to compute
the preliminary fluxes are given by the wP,L/R terms. TheSFen

w U
x
DXn 5 Sm

w U
x
DXnLn ,

transverse flux correction allows the improved CFL crite-
rion alluded to earlier.

Although, the exact solution to the Riemann problem
for the polymer model is well understood [36, 44, 47–50,in either coordinate direction, n [ h1, 2j.

Taylor series expansions are used to determine approxi- 81], we approximate the solution in the interest of compu-
tational efficiency. The application of the Godunov methodmate states at the cell edges at half time levels. For exam-

ple, states at cell edges whose normal vector lies in the to the polymer model involves several modifications of the
basic Godunov approach. First, there are bounds on thefirst-coordinate direction are approximated as
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aqueous phase saturation sa and the polymer concentration near coarse–fine mesh interfaces [34, 42, 62]. Recent devel-
opments in the application of the mixed finite elementc that must be enforced in the characteristic tracing and

Riemann problem solution so that intermediate states are method to more general mesh geometries and locally re-
fined grids have incorporated Lagrange multipliers alongphysically meaningful; namely, 0 # sA, c # 1. Second,

the system exhibits a loss of strict hyperbolicity when the mesh interfaces to improve flux approximation near such
interfaces [87]. We have not yet considered the latest ap-eigenvalues (corresponding to the Buckley–Leverett wave

speed and the particle velocity) are equal. To overcome proaches to preserve flux continuity on composite meshes
nor approaches to handle full tensor permeability fieldsthis difficulty when approximating the Riemann problem

solutions, we resort to the first-order Rusanov flux [68] (e.g., control-volume finite element methods [51]), al-
though this will be a subject of future work. For randomwhen this occurs in combination with a change in sign of

the Buckley–Leverett wave speed. Essentially, this in- permeability fields, or permeability fields involving sub-
stantial discontinuities, elliptic regularity theory does notcreases the local numerical diffusion of the scheme to pre-

vent entropy violations [10]. Third, the flux is a function necessarily allow high-order accuracy. Also, shock-captur-
ing methods, such as the Godunov method, are first-orderof the spatial variable x, in addition to the flux variables.

As we can see from the formulae above, the transverse at best near discontinuities in the solution. It remains to be
explored whether new, more sophisticated approximationflux correction is easily adapted to this situation [41, 42].
techniques can be made computationally viable in large-
scale AMR calculations.

2.2. The Polymer Model Pressure Equation
The approximation of the two-dimensional version of

Eqs. (4) and (5) using the lowest order mixed methodTo approximate the pressure equation (5) in a manner
consistent with the hyperbolic system, the discrete diver- results in a discrete system with three unknowns per grid

cell: the cell-centered pressure and the normal velocitygence operator must be the same in both. We accomplish
this by using an approximation related to the mixed finite at each cell edge. The linear system is nonsingular and

symmetric, but not positive definite. When K is diagonal,element with the lowest order Raviart–Thomas rectangu-
lar elements [66]. The mixed method produces the standard the size of the linear system can be reduced by eliminating

the velocities from the system [28]. The resulting discretecell-centered finite difference approximation, common in
industrial reservoir simulation, when particular numerical system has only the cell-centered pressure values as the

unknowns; thus, one is left with only one unknown perquadrature rules are used to evaluate the necessary inte-
grals induced by the variational form of the equation [69, cell, and a symmetric, positive definite linear system.

To discretize the normal component of vÁ at each cell84]. We will not describe the mixed method in detail;
rather, we comment on the aspects of the method most edge on our rectangular mesh, we approximate the normal

component of the pressure gradient at the cell edges asrelevant to our current application. The interested reader
is encouraged to consult [1, 7, 34, 66] for a complete de-
scription of the method.

(dxp)(1)
i11/2,j 5

pi11,j 2 pi,j

(h1)i11/2
, (dxp)(2)

i,j11/2 5
pi,j11 2 pi,j

(h2)j11/2
,For simplicity, we consider diagonal tensor permeability.

This results in the common finite-difference approximation
of the pressure equation involving harmonic averaging of where the mesh increments are defined as
transmissibility terms across cell boundaries. In the lowest
order Raviart–Thomas approximation spaces, the pressure

(h1)i11/2 5 As[(Dx1)i 1 (Dx1)i11],
and the divergence of the total fluid velocity are repre-

(h2)j11/2 5 As[(Dx2)j 1 (Dx2)j11].sented as piecewise-constant elements, constant on each
rectangular mesh cell. Tensor products of continuous
piecewise-linear and piecewise-constant elements are used The components of the vector of gravity terms at each cell
for each component of the velocity vector. The Raviart– edge are approximated as
Thomas spaces model the continuity of vÁ and the disconti-
nuities possible in =xp in a physically and mathematically c(k)

i11/2,j 5 As heÁ
k (=xd)i11/2,j((rÁ)i,j 1 (rÁ)i11,j)gj,

appropriate manner. In addition, the method possesses
c(k)

i,j11/2 5 As heÁ
k (=xd)i,j11/2((rÁ)i,j 1 (rÁ)i,j11)gj.super-convergence properties on irregular meshes [33, 84].

When the product KlÁ is diagonal and sufficiently smooth,
the pressure and velocity fields are second-order accurate Here, the mobility-weighted density terms are (rÁ) 5

l21
Á (loro 1 lara), and k corresponds to the coordinatein the L2-norm [84].

The accuracy of the velocity field is not maintained on a direction. Finally, the normal components of the total fluid
velocities (we omit the subscript Á) across the cell edgescomposite mesh, however. Computational and theoretical

results show that the method loses an order of accuracy are



528 HORNUNG AND TRANGENSTEIN

vi11/2,j 5 2eÁ
1 (KlÁ)i11/2,j e1[(dxp)(1) 2 c(1)]i11/2,j ,

(9)
tages over the cell refinement strategy. These advantages
are significant for a wide range of computational problems

vi,j11/2 5 2eÁ
2 (KlÁ)i,j11/2e2[(dxp)(2) 2 c(2)]i,j11/2. including, but not limited to, flow in porous media. The

cell refinement approach tends to produce refined regions
The transmissibility term KlÁ at each cell edge is defined that more tightly conform to the spatial structure of the
as the appropriate harmonic average of KlÁ associated features requiring mesh refinement since the patch ap-
with adjacent cell centers. proach refines additional cells to maintain rectangular re-

The discrete version of Eq. (5) is completed by speci- gions. However, in the cell approach, the computational
fying that tasks are organized necessarily by operations performed

on an individual cell. This leads to indirect addressing and
(Dx2)j [vi11/2,j 2 vi21/2,j ] 1 (Dx1)i [vi,j11/2 2 vi,j21/2] 5 0 (10) irregular difference schemes to maintain communication

among data associated with computational cells on the
must hold in each cell. Note that this discrete divergence composite mesh. Moreover, the data structures main-
operator is identical to that used in the conservative differ- taining the cell refinement need to be closely tied to the
ence in Eq. (8). This is important to maintain the numerical finite difference stencils used by the numerical methods.
consistency of the solutions between the two equations The irregular mesh configurations generated by the cell
[42]. refinement strategy can present significant impediments to

efficient linear algebra routines, parallelization, vectoriza-
3. ADAPTIVE MESH REFINEMENT tion, and cache efficiency as well.

Patch refinement allows the intercell communication to
3.1. Overview of AMR for Flow in Porous Media

be maintained in a more straightforward manner and is
designed so that a small number of computationally richAdaptive mesh refinement has proved to be a valuable

computational technique when combined with high resolu- tasks can be organized in a highly structured fashion. We
are able to use integration and iteration routines developedtion shock-capturing methods for multidimensional simu-

lations in a variety of problem areas, such as shock hydro- for logically rectangular meshes on all patches on all levels
in the adaptive mesh hierarchy. Therefore, the user inter-dynamics [13, 27] and nonlinear solid mechanics [77]. The

governing equations in these cited studies consisted pri- face in the code appears much like it does in a conventional
simulator. Moreover, the implementation of efficient andmarily of nonlinear hyperbolic systems of partial differen-

tial equations. The development of an AMR strategy was accurate high resolution numerical routines is better un-
derstood on logically rectangular meshes [13, 77]. In addi-driven by the need to accurately resolve unsteady flows

with shocks in a computationally efficient manner. Accu- tion, the numerical integration routines used to solve the
equations on the adaptive grid are easily separated fromrately resolving discontinuities in the solution and main-

taining global conservation were primary considerations the structure of the AMR algorithm. This greatly enhances
code extendibility, maintenance, and generality. Finally,in the development of the AMR approach. These issues

are vital to the successful application of AMR to flow high resolution numerical methods and domain decompo-
sition methods can be made very efficient on vector andin porous media as well. However, there are additional

considerations regarding porous media flow equations that parallel computers when the data is organized in a highly
structured fashion that closely resembles the manner incomplicate the incorporation of AMR.

During the past decade, a few AMR strategies have been which data is stored in computer memory [13].
It will become evident in the discussion that follows thatdeveloped to treat flow in porous media [24–26, 29, 71].

Commonly, the local mesh refinement was implemented the implementation of AMR requires substantially more
sophisticated programming than conventional integrationby refining individual computational cells one at a time.

We refer to this practice as cell refinement. The AMR on regular meshes. The complexity cannot be avoided us-
ing any particular AMR paradigm, whether patch-orientedparadigm that we employ is based on the ideas introduced

by Berger and Oliger [15], and extended by Berger, Colella or cell-oriented. In the present discussion, program com-
plexity is most prominent in the data structures represent-[13], and Trangenstein [77]. Once individual cells are se-

lected for refinement, the algorithm clusters them to form ing the patches defining the various refinement levels, the
communication between the patches, and the treatmenta collection of logically rectangular patches. The refine-

ment on any level other than the coarsest is defined so of boundary conditions. The encapsulation and dynamic
binding capabilities of C11 have allowed us to developthat the union of the patches is contained in the interior

of the region determined by the union of the patches on a very general adaptive mesh refinement code [74]. The
majority of the code supporting all facets of the adaptivethe next coarser level. This is referred to as ‘‘nested’’ re-

finement. algorithm is independent of the fluid flow model and the
number of spatial dimensions. The numerically intensiveThe patch AMR approach has several important advan-
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routines for integration and patch communication are im-
plemented in FORTRAN. This is advantageous since
FORTRAN provides direct language support for efficient
manipulation of logically rectangular data arrays and a
much more sophisticated mathematical function library.
As a result, the numerical routines appear much as they
would in a conventional simulator written entirely in
FORTRAN. The major difference is that the main time-
stepping loop and the treatment of boundary data for the
patches is handled by the C11 code controlling the AMR
algorithm. For further details on the object-oriented imple-
mentation of AMR, see [23, 43, 77].

Before we commence discussion of the details of the
AMR algorithm, we summarize the properties satisfied by
the composite mesh configuration. The adaptive local mesh
refinement process automatically and dynamically gener- FIG. 1. Sample timestep sequence during AMR: three mesh levels,
ates a hierarchy of levels of mesh refinement. The coarsest refinement ratio 52. The time levels corresponding to the solution on
mesh level covers the entire computational domain. The the finest level (level 2) are given on the vertical time axis at left. The

order of integration on the different levels is illustrated by the numbersregion covered by the patches on each finer level is con-
associated with the curved vertical arrows.tained within the region covered by the patches associated

with the next coarser level. Within each level, cells are
grouped so that they are maintained as a list of logically
rectangular patches. The boundaries of the patches on each

3.3. The AMR Algorithm
finer level align with the boundaries of cells on the next
coarser level. In other words, no cell is allowed to be refined To motivate some of the subtle points in the AMR

methodology, we address, by way of an illustrative exam-partially. Our convention is to refer to the different mesh
levels by a level number so that we know how the levels ple, some algorithmic issues that require special care. In

particular, the value of any flow quantity at a point in therelate to each other when discussing the mesh configura-
tion. In particular, we number the levels in increasing order spatial and temporal computational domain may depend

on the level of mesh one is observing. Special care is takenfrom coarse to fine with the coarsest level numbered 0.
to ensure the consistency of the different flow variables

3.2. The Sequential Solution Procedure in the
on the adaptive mesh. In other words, the time integration

Context of AMR
of the flow equations on the different levels in the adaptive
mesh hierarchy requires that the numerical solution on theThe process of advancing the numerical solution over

a given time interval when using the sequential method different levels be synchronized when and where appro-
priate.consists of two independent steps. In the first step, the

hyperbolic conservation law is integrated in time. Second, The process of advancing data on a level through a
specified time increment involves several distinct tasks.the elliptic pressure equation is solved at the new time to

provide a velocity field associated with the new time. This First, the patches on the level are integrated over a speci-
fied time increment. Then, each finer level (if it exists) issequence of events is straightforward on a uniform mesh.

Special care must be taken to treat the time integration advanced by a recursive invocation of the integration pro-
cess on the finer level. Finally, when all data on the finerprocess properly when using AMR.

Consider advancing the full system of equations over a levels have been advanced to the time associated with
the data on the current level, the data on the levels aretime increment on a single level within the AMR hierarchy.

The integration of the mass conservation equations uses an synchronized. The order of the timesteps during this re-
cursive process in a simple scenario involving three levelsexplicit conservative difference. Communication between

cells associated with patches on the single mesh level is all of mesh is illustrated in Fig. 1. Notice that each time incre-
ment on level 0 or 1 is partitioned into several smallerthat is needed once boundary values for cells bordering

the union of patches on the level and the physical boundary time intervals corresponding to the time increments on the
next finer level. Thus, several timesteps must be taken onare supplied. In contrast, the iterative method that solves

the elliptic boundary value problem for pressure requires each level (finer than level 0) before it is appropriate to
synchronize its data with that on a coarser level. Since weus to enforce communication globally within the computa-

tional domain. Thus, data on patches on different levels consider a refinement ratio of 2 in this example, the size
of the timestep on a finer level is As the size of the timestepmust interact repeatedly during the solution process.
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FIG. 3. In step 4, we advance the solution on level 2 to time t 5 t4 .FIG. 2. In step 3, the conservation law is advanced to time t 5 t1 on
Then, once the pressure equation is solved on all three levels, the datalevel 2, and then the pressure equation is solved on level 2 using all three
on levels 1 and 2 are synchronized. The curved horizontal arrow directedlevels. The curved horizontal arrow denotes the transfer of boundary
from right to left represents the data synchronization.data necessary to integrate the conservation equation, while the straight

horizontal arrows denote the exchange of pressure equation data during
the iterative solution process. The dotted, curved, vertical arrows indicate
time interpolation for the pressure equation coefficients on levels 0 and
1 before we begin the pressure equation solution process. The H indicates the transfer of data during the synchronization process.
where a hyperbolic advance occurs, and the E indicates where the elliptic Then, the pressure equation is solved at time t 5 t2 . How-
equation is solved.

ever, since the pressure solve was deferred on level 2 ear-
lier, we need to initiate the solve with level 2 as the finest
level in the solution process. Following the completion ofon the next coarser level. However, this is not the case in
the pressure solve, the pressure and velocity fields on levelgeneral as we explain in Section 3.4.
1 replace the values previously obtained after step 2. AtLet us consider the events associated with a few steps
the completion of step 4, all data on levels 1 and 2 arein the sequence in Fig. 1. Figure 2 shows the operations
synchronized. In Fig. 4, we illustrate timestep 7, the lastperformed during the first fine timestep (step 3). First, we
in the sequence. Once the conservation law is advancedrefine information from level 1 to level 2 at time t 5 t0
on level 2 to time t 5 t4 , the conserved data is synchronizedto provide the boundary data required to advance the
on all three levels. Then, the pressure equation is solvedconservation law on level 2. This is indicated by the curved
by iterating between all three levels once again. After thehorizontal arrow directed from left to right in the figure.
multilevel iteration is complete, the pressure and velocityAfter advancing the conservation law to time t 5 t1 (signi-

fied by the letter ‘‘H’’ for ‘‘hyperbolic’’ in the figure), we
solve the pressure equation using all three levels (marked
by the ‘‘E’’ for ‘‘elliptic’’ appearing on each level in the
figure). The double arrows symbolize the transfer of infor-
mation between levels 2 and 1, and 1 and 0 during the
iterative solution process. The dotted curved vertical
arrows represent the time interpolation of the pressure
equation coefficients on the coarser levels before the itera-
tive solution process is begun.

Figures 3 and 4 illustrate similar sequences of events for
an intermediate and a final fine timestep. Figure 3 shows
step 4 in which the solution on level 2 is advanced to time
t 5 t2 to synchronize with the solution on level 1. The
procedure is similar to that which was carried out in step
3. However, a few differences are worth mentioning. After
we integrate the mass conservation equations to time t 5
t2, we synchronize the conserved quantities on levels 1 and
2 with the process described in Section 3.7. The curved FIG. 4. After the final step (step 7), all data on all levels are synchro-

nized at time t 5 t4 .horizontal arrow directed from level 2 to level 1 indicates
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fields on all three levels are synchronized. Then, all data
on all levels are synchronized at time t 5 t4 .

This brief illustrative description of the time integration
program is intended to give the reader a sense of the
arrangement of events that comprise the AMR algorithm.
Although we have only discussed steps corresponding to
the integration of the data on level 2, we remark that similar
tasks are performed on levels 0 and 1. The treatment of
the data on the coarser levels involves straightforward
simplifications of the operations illustrated in the figures.
Thus, we have omitted them. We now address the details
of the various events individually.

3.4. Selection of Time Increment

In addition to the CFL condition (Section (2.1)), algo-
rithmic considerations restrict the magnitude of the time
increment over which we integrate. Once the stable time
increment size is determined using the CFL condition, we
reduce the increment, if necessary, to force an appropriate
number of timesteps to be performed on the mesh level
to reach a point of synchronization with the next coarser FIG. 5. Sources for ghost cell data during AMR. The boundary for

the computational domain is the bold vertical line at left. The patch forlevel. If we are at the finest mesh level and the level does
which we seek ghost cell information is next to the physical boundarynot allow additional refinement, then there is no restriction
and has a boundary represented by line segments of intermediate thick-on the size of the timestep aside from the CFL condition.
ness. The fine patch requires ghost cell information in cells inside the

On any level that allows refinement, we require that an larger box whose boundary is indicated with dashed line segments.
even number of timesteps are performed on the level be-
fore synchronization with the next coarser level occurs.
This requirement facilitates the regridding process de-

Ghost cells correspond to the same index space as those
scribed in Section 3.6.

cells associated with a patch interior, but lie outside of the
It is important to note that we do not force the time

patch boundary. If a ghost cell lies outside of the computa-
increment on a finer level to be the size of a time increment

tional domain, the data is obtained from user-prescribed
on the next coarser level divided by the mesh refinement

boundary conditions. If the ghost cell for a patch lies in
ratio. As a simulation evolves, changes in characteristic

the interior of an adjacent patch on the same refinement
speeds cause changes in the stable timestep size determined

level, the data is copied from the neighboring patch inte-
by the CFL condition. Rapid changes in characteristic

rior. If some ghost cell data cannot be obtained in either
speeds can be resolved better on finer meshes. Commonly,

of these two ways, then they are recursively sought by
we see that it is appropriate to choose a smaller timestep

interpolating from coarser levels.
than that which is suggested by dividing the coarse time

Figure 5 illustrates a possible scenario in which we must
increment by the refinement ratio. This behavior is also

determine ghost cell data from each of these situations.
observed by Trangenstein when applying AMR to nonlin-

The patch requiring ghost cell information is the left-most
ear solid mechanics [77]. Thus, we allow the time intervals

fine patch bounded by line segments of intermediate thick-
corresponding to the steps in the timestep loop on a single

ness in the figure. The region over which ghost cell data
refinement level to vary. However, we do attempt to make

is sought lies between the boundary of the fine patch and
the size of each timestep in the loop roughly the same.

the box whose boundary is indicated with dashed line seg-
ments. In this example, we need data in a region four fine

3.5. Boundary Data for a Patch
cells wide around the fine patch. The ghost cells lying to
the left of the bold vertical line are outside of the computa-In the discussion of the time integration in Section 3.3,

we saw that coarse patches are integrated before fine tional domain. Their data are determined by the user-
prescribed boundary conditions. The data in the ghost cellspatches. Therefore, coarse patches must provide boundary

data to finer patches. Proper determination of boundary intersecting the neighboring fine patch are simply copied
from the appropriate cells located in the interior of that finedata for each patch is vital to the success of numerical

integration on an adaptive mesh. The interpatch communi- patch. The remainder of the ghost cell data are obtained by
refining data from underlying coarse cells. Potentially, thecation problem is facilitated by the notion of ‘‘ghost cells.’’
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coarse cell data must be interpolated in time as well as and it is more expensive than more simple gradient detec-
tion strategies. The nonconvex form of the flux functionspace. Also, it is possible that we need to go to even coarser

levels recursively to determine all ghost cell data for a in the polymer model implies juxtaposed waves of different
type may appear in the solution to the Riemann problem.patch.

The details of the process of determining ghost cell data For example, we commonly have a contact discontinuity
connected to a rarefaction wave. Within the rarefactiondepend on the location of the patch within the computa-

tional domain, the mesh level to which it corresponds, and wave the solution is smooth, and the contact is not self-
sharpening. The global truncation error estimation proce-the current state of the algorithm. The width (in number

of cells) of the ghost cell region around a patch depends dure typically selects many cells for refinement in the
rarefaction wave. Since the flow is smooth there, moreon the current state of the algorithm and the flow variables

involved. When data are provided by coarser levels, the refinement may be provided than is desired for reasonable
resolution of the contact discontinuity. In industrial petro-data interpolation procedure also depends on the flow vari-

ables involved. For instance, conservative linear interpola- leum reservoir simulation, it can be more important to
resolve the leading edge of a fluid interface and accuratelytion is appropriate for the conserved variables in the con-

servation law. In contrast, the pressure values needed predict how it will advance rather than refine portions of
the flow domain over which the fronts have already passed.around patch boundaries during the pressure equation

solve are obtained using multilinear interpolation. In our implementation, we have the option to use either
Richardson extrapolation or some user-specified gradient
detection scheme. In the numerical results presented later,

3.6. The Regridding Process
we use a modified version of a sharp discontinuity detector
presented by Colella [80]. That is, we refine cells based onWhen treating time-dependent problems involving tran-

sient phenomena, mesh refinement must move as a simula- significant jumps in the flux variables. Let us illustrate
the application of the gradient detection strategy in onetion evolves. At certain points during the calculation, a

regridding process is invoked during which the algorithm dimension. For the polymer model, we select cell i for
refinement if the following three inequalities are satisfied:adjusts the patch configuration on all levels finer than the

mesh level from which the regridding was initiated. Note
that if the time corresponding to the data on a level matches
that of the data on a coarser level, we must be at a synchro-

uci11 2 ci21u
uci12 2 ci22u

$ a, uci11 2 ci21u . b max
j

ucj u,

max husi11 2 si u, usi 2 si21uj . b max
j

usj u.
nization point. Then regridding may be deferred to some
coarser level if it is also appropriate to invoke the regrid-
ding process on the coarser level at that time.

There are three main design principles enforced during
the regrid process. First, new fine mesh should be located The extension to more spatial dimensions is straightfor-

ward. Notice that each of the comparisons is dimensionlessonly where it is needed to provide adequate resolution or
accuracy. In other words, computational efficiency dictates since it considers the relative magnitudes of the quantities

involved. The first two inequalities are designed to capturethat we avoid unnecessarily large refined regions. Second,
the nesting of the mesh levels must be maintained. Third, sharp contact discontinuities in the polymer concentration.

The last inequality accounts for significant jumps in thethe mesh is not altered after every timestep on each level
since the costs associated with the determination of refined saturation (such as near Buckley–Leverett shocks), while

limiting refinement in the rarefaction wave. We use thecells and the movement of data as patches are created and
destroyed are potentially substantial. The primary aim is values a 5 0.85 and b 5 0.05. Our code design is such that

the criteria for mesh refinement is not part of the generalto keep the cost of the regridding process as small as is
reasonable to attain desired resolution. AMR code; rather, it is supplied by the user. If one can

identify the conditions under which she desires refinementIn previous AMR work [13, 42, 55, 77], an estimate of
the global truncation error was used to identify cells for of the mesh, then that procedure is easily incorporated

into the AMR algorithm.refinement. The goal was to guarantee a specified level
of global accuracy throughout a simulation with nearly Finally, we address one other important mesh refine-

ment issue. Given a particular problem, it must be decidedminimal computational cost. The procedure combined
Richardson extrapolation with a simple appraisal of the which quantities are monitored during the regridding pro-

cess. Currently, in our polymer model simulations, wetotal number of timesteps needed on a given mesh level
to complete the simulation. There are several important consider each of the flux variables so that we are assured

of refining the mesh sufficiently near contact discontinuitiesadvantages to this process, the most important of which is
that the method is fairly general. But it can produce larger in the polymer concentration and Buckley–Leverett

shocks in the aqueous phase saturation. For some prob-refined regions than may be desired for some applications
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lems, it may be appropriate to consider additional quanti- intersect fine patches. Third, we replace the mass in coarse
cells underlying fine cells with a volume-weighted averageties such as pressure or total fluid velocity as well. However,

recent analytical and numerical results suggest that, in in- of the fine cell masses:
compressible flow problems involving a heterogeneous
reservoir, the changes in pressure and velocity can be

mIJ 5
oij[IJ mij(Dx1)i(Dx2)j

oij[IJ (Dx1)i(Dx2)j
.estimated in terms of suitably chosen norms of mobility

perturbations [21]. To this point, we have monitored only
the flux variables during the regridding process. Whether

Here, the sum is over fine cells (i, j) contained in coarsethis is appropriate for more complicated models or com-
cell (I, J). At the completion of the recursive timesteppingpressible flow is the subject of ongoing work.
process invoked from the coarsest mesh level, the time
integration is mass conservative.3.7. Mass Conservation

The final AMR issue we will discuss in this section is
4. THE ITERATIVE SOLUTION OF THEmass conservation on an adaptive mesh. We have noted

PRESSURE EQUATIONpreviously that boundary data for fine patches are obtained
from coarser patches. However, fine patches typically pro-

Iteration schemes based on the multigrid method haveduce more accurate numerical results. Therefore, at times
been employed to solve boundary value problems on lo-when it is appropriate for patches on different levels to be
cally refined grids in a variety of ways [20, 61, 67]. Somesynchronized, we use information obtained on fine patches
studies partition the computational mesh into local sub-to improve data on coarser patches. The refluxing process
regions. Solution methods are applied to each subregionenforcing mass conservation requires extra data to be
independently to precondition the linear system associatedstored during the numerical time integration process. If a
with the large globally defined problem or to achieve alevel can be refined, we store the numerical flux integrals
fast solution method through parallelization [16–18].associated with centers of the space-time sides of each cell
Other approaches couple the grid adaptivity to the iterativeon the level. If a level is not the coarsest, we accumulate
solution process. Local refinement is used to increase accu-the time and space integral of the flux around the boundary
racy in the approximate solution and to speed the reductionof the finer patches during the timestep loop.
of the residual in certain subregions of the problem do-Recall the discrete conservative difference (Eq. (8)) that
main [67].approximates mass conservation. The refluxing process for

The multilevel iteration method we use is based on thethe conservation law is a three step process. First, we re-
full approximation storage (FAS) algorithm originally pro-place the coarse fluxes at coarse cell edges intersecting the
posed by Brandt [20]. The FAS method generalizes theboundaries of fine patches with the time and boundary
common linear multigrid method in several ways. In par-integral of fine fluxes accumulated during integration on
ticular, the FAS algorithm is appropriate for nonlinearthe finer level. That is, approximate coarse flux integrals
problems and provides a natural setting for an iterative
treatment of problems approximated on a locally refined

Dtn
c(Fe1)n11/2

I11/2,J , Dtn
c(Fe2)n11/2

I,J11/2 mesh. As in the multigrid method, the FAS algorithm re-
duces the magnitude of nonsmooth error modes, which

are replaced by sums of approximate fine flux integrals have a short coupling range on the numerical mesh, by
employing a suitable relaxation scheme. The smooth error
modes, which are coupled over many mesh cells, are re-O

k 5 O
(i11/2, j)[(I11/2,J)

Dtk
f (Fe1)k11/2

i11/2, j6 , duced by solving a system of equations corresponding to
a related problem on a coarser mesh.

The process of employing a sequence of coarser mesh
levels to solve a discrete problem associated with a fineO

k 5 O
(i, j11/2)[(I,J11/2)

Dtk
f (Fe2)k11/2

i, j11/26 , mesh provides a complementary operation to classical
iterative methods. The spectral radius of the error reduc-
tion operator associated with the Gauss–Seidel method,
for example, is known to approach one rapidly as the meshrespectively. The cell edge summation is over fine cell

edges intersecting coarse cell edges whose union forms fine is refined and the size of the linear system increases
[39, 83]. On the other hand, classical iterative methodspatch boundaries. The time increment summation is over

the time increments in the fine timestep loop associated are proficient at rapidly reducing the amplitude of high
frequency error components in a linear problem with awith the coarse timestep Dtn

c . Second, we repeat the conser-
vative difference of Eq. (8) on the coarse patches that smooth solution. In other words, these iterative methods
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are good at smoothing the error, rather than eliminating equation satisfied by the velocity (5). Substituting expres-
sion (4) into Eq. (5), we obtain an elliptic equation forit entirely. Thus, classical relaxation schemes can be used

in a multigrid setting without the overall iterative solution pressure,
process suffering from the poor convergence rates typical
of the relaxation schemes alone. The convergence of =Á

x (KlÁ =x p) 5 =Á
x [K(loro 1 lara)g =xd]. (11)

multigrid-type iterative methods has been studied exten-
sively; see Hackbusch [38] and McCormick [60] for the

For ease of notation in the following discussion, we repre-classical theory. Unfortunately, rigorous analysis has been
sent the discrete weak form of this problem (and appro-completed only in specialized cases. However, the ro-
priate boundary conditions) asbustness of the multigrid approach has been demonstrated

by its incorporation into the numerical solution of a wide
variety of physical and mathematical problems [2, 30, 61, Lu 5 b, (12)
67, 86].

In the current application, we are primarily concerned where u corresponds to the pressure unknown.
with capturing fluid interfaces whose time evolution is Let V be the rectangular domain representing the entire
modeled by the coupling between hyperbolic mass conser- reservoir problem. We aim to solve Eq. (11) on V with
vation equations and an elliptic pressure equation. The suitable boundary conditions specified on V. The iterative
role of the multilevel iteration is to solve the pressure solution process consists of successively treating a sequence
equation on the adaptive mesh configuration determined of boundary value problems associated with Eq. (11) posed
by the location of fluid interfaces. Since mesh refinement on the composite mesh. Consider the overlapping sub-
is placed near important fluid interfaces, the pressure and domains of V represented by two consecutive mesh levels.
velocity fields are more highly resolved near the fronts. We label the subdomains Vc and Vf, and assume Vf ,
The multilevel iteration must be able to treat a fairly gen- Vc. On Vf, we solve Lfuf 5 bf which represents Eq. (12)
eral mesh configuration as well as reasonably general be- restricted to Vf, subject to the boundary condition uf 5
havior in the system of discrete equations representing Puc on Vf. The operator P is the prolongation operator
the pressure equation. The individual components of the mapping functions defined on the coarse mesh in Vc so
multilevel iteration (e.g., relaxation scheme, intergrid com- that they are defined on the fine mesh in Vf. The coarse
munication operators, domain decomposition) that we em- solution uc satisfies Lcuc 5 bc on Vc\Vf and Lcuc 5 LRufploy are fairly standard and are only well suited to smooth on Vf . The restriction operator R coarsens functions de-
elliptic boundary value problems. To this point, our em- fined on the fine mesh corresponding to Vf so that they
phasis has been on algorithm and data structure develop- are defined on the coarse mesh corresponding to Vc . The
ment. Sophisticated state-of-the-art methods need to be boundary values for uc on Vc are provided by the solution
explored and incorporated so that AMR may be applied to a problem posed on a subdomain of V containing Vcto more complicated, realistic porous media flow problems. and corresponding to a coarser mesh level if such a level

exists. During the multilevel iteration associated with
AMR, each of these subdomains (corresponding to a single4.1. Domain Decomposition
mesh level) is partitioned further into a collection of sub-

Since the union of the patches on the level may not domains each of which represents the region covered by
cover the entire computational domain, the coarser levels a single rectangular patch in the mesh hierarchy. Similar
in the mesh hierarchy must be employed to enforce the boundary value problems to those described above are
global communication of the data described by the elliptic posed on each rectangular subregion with boundary values
pressure equation. The process of constructing the solution provided by neighboring subdomains (in either Vf or
by iterating between fine and coarse levels in the multilevel Vc\Vf ) in the obvious manner.
algorithm acts as a Schwarz-like domain decomposition
process [53, 58]. That is, the solution on the composite

4.2. Multilevel Iteration
mesh is generated by applying a product of linear operators
to some initial guess at the solution. The classical applica- The multilevel iteration carries out the successive treat-

ment of the various boundary value problems describedtion of the Schwarz alternating method suffers from a linear
convergence rate. During the multilevel iteration, ghost in the previous section. We present the iteration process

in a recursive form in terms of two consecutive levels incell data facilitates the residual smoothing process on finer
levels, and the overlapping hierarchical mesh structure the mesh hierarchy. The collection of computational cells

associated with the finer mesh level is denoted as Gf , andallows faster global data communication.
Recall Eq. (4) relating the total fluid velocity to the Gc represents the mesh on the next coarser level. In refer-

ence to the discussion in Section 4.1, the regions coveredpressure gradient and gravity, and the divergence-free
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by Gf and Gc are Vf and Vc , respectively. Since Vf , Vc , (4) Set the right-hand side of the linear system on
the next coarser level:it is appropriate to partition Gc into two subsets:

Gc 5 (Gc\G
f
c) < G f

c . gc 5 Hbc in (Gc\G
f
c )

bc 1 t f
c in G f

c

Here, G f
c represents the collection of cells in Gc such that

(5) Recursive call: start at step (0) on the nextthe interior of each cell intersects the interior of some cell
coarser level c.in Gf . In other words, G f

c is the set of cells in Gc that
are refined. (6) Correct the approximation on the current level:

Let Uk denote the set of real-valued grid functions de-
u(2)

f 5 u(1)
f 1 P(uc 2 u(0)

c ).fined on Gk representing the pressure unknowns on mesh
level k, where k [ h f, cj. We assume that we have a smooth- (7) Perform post-correction smoothing relaxations
ing (relaxation) operator defined on each level until convergence slows:

uf 5 S (?)
f (u(2)

f , gf ).Sk : Uk 3 Uk R Uk , k [ h f, cj.

endifThe expression
end

u(new)
k 5 S(n)

k (u(old)
k , bk)

Here, gk represents the right-hand side of the linear
symbolizes the process of producing a new approximation system on level k, k [ hf, cj. The term t f

c appearing in the
u(new)

k to uk (satisfying Lkuk 5 bk) by performing n iterations definition of gc is motivated by the multigrid approach. We
of the relaxation method, where we use the approximation will address the details of the various parts of this iterative
u(old)

k as the initial iterate. We also assume that there exist solution process in the sections that follow.
linear operators that map discrete functions defined on

4.2.1. Prolongation and Restriction. A proper choiceeach mesh level to the other mesh level:
of prolongation and restriction operators is important to
the success of the multilevel iteration. The prolongationP : Uc R Uf , R : Uf R Uc .
operator transfers the error approximation from a coarse
level to a finer level. Prolongation also impacts the accuracyHere P is a prolongation (refining) operator and R is a
of the fine approximation since the boundary values forrestriction (coarsening) operator.
the fine patches are determined by the manner in whichSuppose that we have been provided with an initial guess
we fill the ghost cells from a coarser level. The restrictionat the solution on each mesh level. Denote the initial guess
operator also affects the correction process since it trans-on the finest level as u(0)

f . The adaptive multilevel iteration
fers the fine solution approximation to a coarser level.transforms u(0)

f by cycling through the mesh levels in the
In the cell-centered mesh structure that we employ, fineV-cycle pattern adopted from the multigrid methodology.

cells are constructed by partitioning each coarse cell. OnA single V-cycle can be described in recursive pseudo-
the composite mesh, it is meaningful to transfer data be-code form as follows:
tween two levels only in regions where there exist cells
corresponding to each level. Thus, the domain and range(0) begin V-cycle to solve Lf uf 5 gf .
of R and P are limited to the cells existing on a given level.

if (level f is the coarsest level in mesh hierarchy) The restriction operator R that we use employs a cell
then volume-weighted average from fine cells within a coarse

cell to the underlying coarse cell. The prolongation opera-(1) Solve system: uf 5 L21
f gf . tor P is piecewise-bilinear interpolation. We note that the

else piecewise-constant restriction operator is not the adjoint
of the bilinear interpolation operator. However, it is the(2) Perform smoothing relaxations on level f until
adjoint of a piecewise-constant prolongation operator. Theconvergence slows:
bilinear interpolation operator interpolates first degree

u(1)
f 5 S (?)

f (u(0)
f , gf ). polynomials exactly, while the piecewise-bilinear restric-

tion operator interpolates constant polynomials exactly.(3) Adjust the solution on the next coarser level,
Classical multigrid theory suggests that these characteris-

uc 5 Ru(1)
f .

tics are necessary for convergence of the iteration [38, 85,
86]. Although we have achieved some success with theAlso, set u(0)

c 5 uc .
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straightforward application of these simple mesh transfer Ruf . The term t f
c is referred to as the relative discretization

error. It is the fine-mesh approximation to the coarse-meshoperators, the complexity and nonsmooth nature of porous
media flow equations suggests that we should consider truncation error [20, 67]. Therefore, each mesh level plays

two roles potentially. Aside from the finest and the coarsestmore elaborate, physically-motivated approaches [2, 30,
38] in subsequent work. levels, each level serves as both a coarser level and a finer

level. In a region where a particular mesh level is the finest,
4.2.2. The Coarse-Mesh Correction. The algorithmic the mesh associated with the level is used to approximate

form of the sequence of steps (3)–(6) in which the fine the actual differential equations to be solved. In a region
solution is corrected by adding a term obtained on the where there exists further refinement, the mesh is a device
coarser level is similar to the correction stage in the used to compute a correction to the solution on a finer
multigrid method. The difference is that, in the multilevel level. Indeed, the multigrid algorithm can be interpreted
iteration described above, the mesh transfer operators and as a scheme for determining the t term on each level [67].
the definition of the coarse mesh linear system are con-
structed for the locally refined mesh case. The mesh trans- 4.3. The Coarse-Mesh Coefficient Matrix
fer operators are defined only in regions where the mesh

Recall the discrete equations (9) and (10) that determineexists on a particular level. The right-hand side of the
the approximate pressure p and total fluid velocity vÁ .coarse mesh linear system accounts for the possibility that
When the difference equations (9) for the components offine data do not exist on the entire domain associated with
vÁ are substituted into the discrete version of the diver-the coarse mesh.
gence-free equation (10), we obtain the system of differ-When treating the composite mesh configuration, we
ence equations associated with the elliptic pressure equa-define the right-hand side of the coarse mesh linear sys-
tion (11). This system corresponds to the linear systemtem as
Lu 5 b appearing in the discussion of the multilevel itera-
tion. The discrete differential operator on the finest level

gc 5 Hbc in (Gc\G
f
c)

bc 1 t f
c in G f

c,
in the multilevel iteration cycle arises directly from the
difference equations applied to each patch on the level. For
coarser levels, the elements of the matrix corresponding to

where refined cells are upscaled so that coarse and fine linear
systems are consistent in the sense that total fluid volume

t f
c 5 R(bf 2 Lfuf ) 2 (bc 2 LcRuf ). is conserved. The total fluid velocity represents the flux of

the total fluid volume. So our primary concern when solv-
ing the pressure equation is conserving this flux across cellThat is, t f

c is a difference between residuals on two levels.
boundaries on the composite mesh to produce a discreteThe key to the success of the FAS form of the multigrid
total fluid velocity field that is divergence-free. In the fol-algorithm is that the current approximation to the solution
lowing discussion, we omit the subscript Á when referringto the discrete linear system is maintained on each mesh
to the total fluid velocity.level. The standard linear multigrid method usually main-

Consider a coarse cell RIJ indexed by (I, J). On thetains only the correction to the solution on the next finer
composite mesh, RIJ is the union of four fine cells Rijlevel since the fine and coarse meshes region cover the
indexed by (i, j). At any point in the multilevel iteration,same part of the domain. In that case, the right-hand side
we would like the integral form of equation (5) to holdfor the coarse level is simply the fine residual coarsened
over each cell:to the coarse mesh.

The term t f
c appearing on the right-hand of the coarse-

mesh equation is suitable to make the coarse-mesh solution E
RIJ

vÁn̂ ds 5 E
RIJ

qdA 5 O
Rij,RIJ

E
Rij

qdA 5 O
Rij,RIJ

E
Rij

vÁn̂ ds.
coincide with the fine-mesh solution in the sense that the
restriction operator is defined

Here, q corresponds to nonzero source terms appearing
uc 5 Ruf . on the right-hand side of the coarse-mesh linear system.

The desired integral relationship will hold in a discrete
It is easy to see that when the fine linear system is satisfied, form if we define the coarse-mesh coefficient matrix so
the coarse linear system reduces to that the discrete integral of the coarse fluid velocity normal

to each coarse cell edge is equal to the sum of the discrete
Lcuc 5 LcRuf . integrals of the fine normal velocity across the fine cell

edges whose union is the coarse cell edge. For example,
along the right edge of coarse cell RIJ , we wantSince Lc is a nonsingular linear operator, we have uc 5
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solved behaves like Poisson’s equation [20, 38, 52, 86]. We(Dx2)JvI11/2,J 5 O
(i11/2,)[(I11/2,J)

(Dx2)jvi11/2, j

have chosen the checkerboard Gauss–Seidel method since
it is known (through both rigorous analysis and computa-

to hold. tional experiments) to possess suitable smoothing proper-
The upscaling of the fluid velocities is performed in a ties for many problems [38]. The checkerboard ordering

manner consistent with the extension of the lowest order also reduces the directional bias of the standard line-
mixed finite element method described in Section 2.2. On ordered Gauss–Seidel method.
any refinement level, the discrete integral of the velocity Following the lead of multigrid theory and computa-
associated with the x1-coordinate direction has the form tional experience, it is most efficient to change the iteration

from one level to the next at the point when the conver-
(Dx2)jvi11/2, j 5 (Dx2)j [G

(1)
i11/2, j 2 T(1)

i11/2, j (dxp)(1)
i11/2, j]. gence rate of the relaxation process begins to decrease.

Instead of using a fixed value for the number of iterations
The G term represents the product of transmissibility and in the smoothing process on each level, we allow the cur-
gravity terms at the cell edge, while the T terms represent rent state of the solution to guide the process of cycling
entries in the transmissibility matrix associated with the through the levels. In particular, we discontinue the relax-
cell edge. Thus, the gravity terms are upscaled as ation process on a level when

ir (n)iy

ir (n21)iy
$ h,

G
(1)
I11/2,J 5

1
(Dx2)J 5 O

(i11/2, j)[(I11/2,J)
(Dx2)j G

(1)
i11/2, j6 .

where h is a user-specified tolerance. The fraction repre-
sents the ratio between the Ly-norms of scaled residualsThe transmissibility terms associated with the normal di-
after successive iterations in the relaxation process. Therection are upscaled as
scaled residual r is defined to be

r 5 D21(b 2 Lu).T(1)
I11/2,J 5

(h1)i11/2

(h1)I11/2 5 O
(i11/2, j)[(I11/2,J)

T(1)
i11/2, j6 .

The matrix D represents the diagonal entries of L. The
component of the scaled residual vector corresponding

Similar formulae are used for velocity components normal to a particular mesh cell is precisely the change in the
to the x2-coordinate direction. For a more detailed discus- approximate solution obtained by applying one iteration
sion of the upscaling issues involved in the solution of the of the Gauss–Seidel method at that point. When the
pressure equation, see [43]. Gauss–Seidel iterates are not changing much and the ratio

of successive scaled residual norms is near one, the smooth-
4.4. The Smoothing Operation and Stopping Criteria

ing operation carried out by the Gauss–Seidel method is
not contributing significantly to the solution process. Thus,Since the multilevel iteration involves a discrete system

of equations on many mesh levels potentially, we force the the scaled residual is the correct quantity to monitor to
avoid wasted computational expense in the multilevel pro-residuals on all levels to be small before we terminate the

iteration. Our heuristic, based on discussion presented in cess. See Rüde [67] for additional discussion regarding the
role of the scaled residual in multilevel iteration methods.Rüde [67], is that once an appropriately chosen norm of

the residual on each level is reduced sufficiently, then a As in the case of the prolongation and restriction operators,
the choice of the Gauss–Seidel method as a relaxationrelated norm of the global error, defined on the composite

mesh, is below some desired tolerance. We remark that scheme was made to gain computational experience with
the combination of AMR and multilevel iteration. Furtherthe coarsest grid used in the multilevel iteration may be

much coarser than the global coarsest grid appear in the analytical and computational work must be done to under-
stand the effect that substantial variations and discontinu-level hierarchy. Since the coarsest grid in the multilevel

sequence contains very few grid points, we solve the linear ities in the coefficients of partial differential equations have
on multilevel iterative solution methods. Recent studiessystem to machine precision with a conjugate-gradient

iteration. suggest that the difficulties in applying multilevel iteration
methods to ‘‘interface’’ problems center on the deficienciesThe relaxation method that we employ on each rectangu-

lar patch on each finer mesh level is the classical Gauss– in the prolongation and restriction operators and the relax-
ation schemes [2, 3, 19, 52, 54], as well as the fundamentalSeidel method with the checkerboard ordering of the mesh

points. Much is known about the smoothing properties of discretization of the underlying partial differential equa-
tions [51].many standard iterative methods when the problem to be
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5. NUMERICAL RESULTS

In this section, we present computational results illus-
trating some numerical properties of the methods de-
scribed in previous sections. First, we discuss convergence
behavior of the multilevel iteration procedure on a locally
refined grid. Then, we discuss convergence behavior of a
sequential calculation involving a coupled system of equa-
tions as described in Section 1.1. Finally, we compare an
AMR simulation with a uniform grid simulation. We in-
clude an execution timing comparison between the adap-
tive computation and the fixed mesh computation. The
timing comparisons demonstrate the primary benefit (i.e.,
computational savings) of using AMR and show where the
computational effort is being expended in our calculations.

5.1. Multilevel Iteration

First, we demonstrate the convergence properties of the
approximate solution to Poisson’s equation using the multi-
level iteration on a locally refined grid. On a mesh with
no local refinement, the discretization is equivalent to the

FIG. 6. The mesh configuration for the Poisson’s equation test prob-lowest order mixed finite element. On a mesh with local lem: coarse grid is 20 by 20, refinement ratio 5 2.
refinement, the discretization on each patch on each level
is also equivalent to the mixed finite element discretization.
However, the boundary data associated with each patch and the finite element representation of the approximate
during the multilevel iterative solution process are deter- solution yield the optimal first-order convergence reported
mined through communication with coarser mesh patches. in [35, 66]. In the interest of brevity, we present results
For a discussion of convergence results for mixed finite using discrete error norms only. In Table I, discrete L2-element methods; see [31, 34, 35, 66, 84, 87]. We show that norms of the error arising in the quadrature formulae for
we achieve similar results. the mixed finite element method [84] are used. The results

We approximate the pressure p and the velocities illustrate that we achieve nearly the second-order super-
2p/x, 2p/y for the model problem convergence rate of the mixed method for the pressure

values on the locally refined mesh. However, the overall
accuracy is worse for local refinement. The primary contri-2p

x2 1
2p
y2 5 b(x, y) in V

bution to the error arises near the coarse–fine interface
indicating that our discretization process needs to be im-p(x, y) 5 f(x, y) on V,

where b(x, y) and f(x, y) are chosen so that the solution is
TABLE I

p(x, y) 5 sin(fx) sin(fy) 1 x2y. Discrete L2 Error Norms Computed over Entire
Computational Domain

The computational domain is V 5 (0, 1) 3 (0, 1). The
Global errors in the discrete L2-normsolution is chosen so that p has a simple analytic form with

no obvious symmetries in x or y. In all computations, the Refinement Coarse grid i«p iM i«v iTM
multilevel iterations were continued until the residual was

None 20 3 20 0.0001847 0.002625on the order of the machine precision on each level used
40 3 40 0.0000464 0.000672by the multilevel process. The iteration process is per-
80 3 80 0.0000126 0.000172formed on a fixed locally refined mesh configuration illus-

Local 20 3 20 0.000545 0.008603trated in Fig. 6. We also compare calculations on refine-
40 3 40 0.000133 0.002727ments of this grid configuration, where the coarse grid is
80 3 80 0.000035 0.000880

40 by 40 and 80 by 80.
Standard continuous L2 error norms comparing the inte- Note. Subscript TM signifies trapezoidal-midpoint quadrature, while

subscript M indicates midpoint quadrature.gral of the squared difference between the analytic solution
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TABLE IIproved. Note also that the convergence rate in i«v iTM is
significantly less than second-order for local refinement. L1 Error Norms in Conserved Mass Vector
This result was also reported for a similar problem in [31, Computed over Entire Computational Domain
32, 34]. We remark that the results shown above are not

Global mass errors: i«m i1generally achieved for more complicated problems involv-
ing discontinuities and anisotropies in the coefficients,

Uniform mesh Adaptive meshproblems that we are ultimately interested in.
24 3 10 0.01408 0.01408
48 3 20 0.008409 0.0088655.2. Sequential Solution Method and AMR 96 3 40 0.004999 0.005591

192 3 80 0.002610 0.002946We are primarily interested in developing a computa-
tional approach that will efficiently resolve porous media
flows with interesting fluid interfaces. The problem for
which we present results involves a two-dimensional verti-
cal cross section between an injection well and a production mesh computations are performed on uniform refinements

of the coarsest mesh, where the ratio between refinementwell. The reservoir is filled initially with a 10% aqueous
phase mixture containing a 10% polymer concentration. levels is 2. The adaptive mesh calculations are performed

using 2, 3, and 4 levels of mesh, or 1, 2, and 3 levels ofThe reservoir porosity is constant, but we allow permeabil-
ity variation in horizontal layers throughout the reservoir. refinement of the coarsest level. The errors in Table II can

then be compared by considering the refinement associatedWe have also included the influence of gravity in the com-
putation (g=xd 5 [0, 25 3 1024]Á in Eq. (3)). A 100% with the finest level of mesh present. We achieve nearly

the same rate of convergence and magnitude of accuracyaqueous phase mixture with a 90% polymer concentration
is injected at a constant rate in the injector along the left on the series of uniform meshes as on the adaptive meshes.

We remark that these sorts of results are problem-depen-boundary. The flow into the producer along the right
boundary is determined from the specified production dent when using a gradient-detection refinement strategy

as described in Section 3.6 (see [43]). Note also that thepressure and gravity equilibrium in the producer. The top
and bottom of the reservoir are sealed; that is flow normal rate of convergence is first order at best. There are a couple

of important reasons for this. First, the major contributionto those boundaries is not permitted. The numerical treat-
ment of no flow boundary conditions is straightforward in to the error arises near the fluid interfaces in all cases. The

Godunov method is only first-order accurate at best nearthat the normal component of the total fluid velocity is
simply set to zero at each cell edge along the top and these discontinuities. Second, the sequential time integra-

tion method described in Section 2 is at most first-orderbottom of the reservoir. The well boundary conditions are
discussed in Section 1.1. At the injector, we must conserve accurate in time when the pressure and velocity field de-

pend on the fluid composition and vice versa. Neither ofthe total flow rate along the boundary. We make sure that
the integral of the normal component of the flux along any these considerations necessarily eliminates the need for

a high-resolution method such as the Godunov method.portion of the injector is independent of the level of mesh
one is considering. Special care is given to assure that Lower resolution methods often underresolve complicated

fluid interfaces spatially due to substantially increased nu-this holds across coarse–fine mesh interfaces along the
boundary as well. Vertical equilibrium at the producer merical diffusion [41]. Recently developed sequential inte-

gration approaches for coupled equations have achievedrequires that pressure at any point along the boundary is
also independent of the level of mesh one is observing. higher order accuracy on adaptive meshes; see [6], for

example. We are exploring similar enhancements for flowFurther details of the AMR implementation of well bound-
ary conditions are presented in [43]. in porous media currently.

Finally, in Figs. 7–9, we compare pictorially the uniformFirst, we consider a numerical estimation of the global
error incurred in integrating such a problem on a series of and adaptive mesh results for 192 3 80 case above. Each

plot contains 25 evenly spaced contours of the aqueousuniform meshes and a series of adaptive meshes. The global
error is the difference in the conserved mass computed on phase saturation and the polymer concentration. Recall

that the values of both sa and c lie in the interval betweenthe uniform and adaptive meshes and a very fine uniform
mesh (384 by 160) at a fixed integration time. The com- zero and one. Thus, the maximum variation between suc-

cessive contours is at most 4%. The rectangular boxes inputed L1 error i«mi1 is summed over the components of
the conserved mass vector m in Eq. (3) and summed over the AMR plots correspond to the boundaries of the patches

on the different levels of mesh refinement. An early stageall computational cells in the composite mesh at the given
time. The coarsest mesh used has 24 cells in the horizontal of the simulation (0.06 pore volumes injected) is illustrated

in Fig. 7. The impact of the permeability variation on thedirection, 10 cells in the vertical direction. Finer uniform
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denser water phase to flow downward. The location of the
contact discontinuity in the saturation is more clear if one
mentally super-imposes the polymer contours onto the
saturation plot. It is also significant to note the sharpness of
the polymer contours, even in the presence of permeability
heterogeneity. Also, the leading edge of the Buckley–
Leverett wave in the saturation is very sharp although the
front is not aligned with the mesh. This high resolution is
primarily the result of the ability of the Godunov scheme
to treat diagonal transport properly.

In Fig. 9, the aqueous phase has broken through to the
producer. The leading shock in the saturation profile is
still sharply resolved. The influence of gravity segregation

FIG. 7. Cross-section polymer flooding example at approximately
0.06 pore volumes injected. AMR results shown with uniform fine grid
results for comparison. The boxes in the AMR contour plots correspond
to the boundaries of the rectangular patches on the adaptive mesh. Shown
are (a) aqueous phase saturation (AMR), (b) aqueous phase saturation
(uniform grid), (c) polymer concentration (AMR), (d) polymer concen-
tration (uniform grid).

formation of fluid interfaces is evident in the irregular
shape of the contours. At this point, the contact discontinu-
ity and the Buckley–Leverett shock have not separated
substantially yet. In the saturation plot, we see the rarefac-
tion wave beginning to form behind the leading edge of
the front.

In Fig. 8, approximately 0.14 pore volumes have been
injected. The flow has evolved to the point where the

FIG. 8. Cross-section polymer flooding example at approximately
separation of the shock and contact is evident in the satura- 0.14 pore volumes injected. Shown are (a) aqueous phase saturation
tion profile. The separation is most evident below the two (AMR), (b) aqueous phase saturation (uniform grid), (c) polymer concen-

tration (AMR), (d) polymer concentration (uniform grid).higher permeability layers, where gravity is causing the
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Most prominent is that the AMR simulation ran around
4 times faster than the fine mesh calculation. Also, the
simulation time associated with the pressure equation solve
is much greater than that required to advance the conserva-
tion law. We can see that just over 20% of total computa-
tional time in the AMR calculation was spent on mesh
adaptation and refluxing operations. This is roughly twice
the overhead cost reported in AMR computations for gas
dynamics [13] and solid mechanics [77]. The additional
expense for flow in porous media calculations arises from
the need to re-solve the pressure equation after the mesh
has been reconfigured. The mesh adaptation times re-
ported in the table include the cost of the multilevel itera-
tion for this purpose. We also note that timings for the
mesh adaptation on levels 0 and 1 include the expense of
regridding finer levels. The reason for this is that at certain
points in the algorithm, invocation of the mesh movement
process on a level is deferred to a coarser level if the
coarser level should also allow mesh movement at that
time. Therefore, most of the time indicated for mesh adap-
tation on coarser levels was in fact spent during the re-
cursive application of the regridding procedure on finer
levels.

6. SUMMARY

We have described the extension of the adaptive mesh
refinement methodology originally developed by Berger
and Colella [13] to two-dimensional incompressible multi-
phase flow in porous media. As in the original AMR ap-
proach, we employ the high resolution Godunov method
for the time integration of the hyperbolic system of mass
conservation equations. The extension of the algorithm

FIG. 9. Cross-section polymer flooding examples at approximately TABLE III
0.30 pore volumes injected. Shown are (a) aqueous phase saturation

Computational Time Comparison for Polymer Flooding(AMR), (b) aqueous phase saturation (uniform grid), (c) polymer concen-
Problem Using Adaptive and Uniform Meshes for Polymertration (AMR), (d) polymer concentration (uniform grid).
Flood Problem

Computation time (in seconds)

and the layered permeability variation has caused the
Adaptive mesh

contact to spread in the regions below the high permeabil- Computational Uniform
task mesh L0 L1 L2 L3ity layers. Overall the fluid interfaces are still quite clear.

Notice that the mesh has de-refined in the region of the
Conservation 1283.74 5.11 42.46 333.82 1613.49rarefaction wave behind the saturation discontinuity. This

law
mesh coarsening is the primary cause of noticeable differ- Pressure 53440.06 10.34 131.40 956.77 6384.62
ences in saturation contours between the uniform and equation

Mesh adap- 446.71 837.92 1195.27adaptive mesh calculations. Essentially, information in the
tationrarefaction profile is lost as the mesh is coarsened.

Refluxing 2.07 26.30 199.99In Table III we have outlined a comparison of computa-
Time on level 54723.80 462.16 1013.85 2512.02 8198.10

tional timings between the adaptive mesh refinement poly- Total time 54723.80 12186.13
mer flooding simulation and the uniform mesh calculation.
The timing comparison shows some interesting results. Note. Times are in seconds on an SGI Indigo R4000 workstation.
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FIG. 10. Adaptive mesh configurations at (a) 0.06 pore volumes injected, (b) 0.14 pore volumes injected, (c) 0.30 pore volumes injected.

centers on the numerical treatment of the elliptic/parabolic of equations with mixed hyperbolic/elliptic character to
be combined in a consistent fashion. Other extensions toaspects of the flow equations in the AMR setting. In par-

ticular, multilevel iteration and domain decomposition the original AMR algorithm follow the work of Trangen-
stein and his application of AMR to solid mechanicsmethods are introduced to solve the elliptic pressure equa-

tion. The AMR algorithm allows specialized numerical problems [77]. The algorithm allows significant compu-
tational savings with an overhead cost of slightly more thanmethods to treat different behavior presented by systems
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